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Summary

Sublethal injury triggers long-lasting sensitization of defen-

sive responses in most species examined, suggesting the

involvement of powerful evolutionary selection pressures
[1]. In humans, this persistent nociceptive sensitization is

often accompanied by heightened sensations of pain and
anxiety [2]. While experimental [3] and clinical [4] evidence

support the adaptive value of immediate nociception during
injury, no direct evidence exists for adaptive benefits of

long-lasting sensitization after injury. Recently, we showed
that minor injury produces long-term sensitization of behav-

ioral and neuronal responses in squid, Doryteuthis pealei
[5, 6]. Here we tested the adaptive value of this sensitization

during encounters between squid and a natural fish pred-
ator. Locomotion and other spontaneous behaviors of squid

that received distal injury to a single arm (with or without
transient anesthesia) showed no measurable impairment

6 hr after the injury. However, black sea bass given access
to freely swimming squid oriented toward and pursued

injured squid at greater distances than uninjured squid,
regardless of previous anesthetic treatment. Once targeted,

injured squid began defensive behavioral sequences [7, 8]
earlier than uninjured squid. This effect was blocked by brief

anesthetic treatment that prevented development of noci-
ceptive sensitization [6, 9]. Importantly, the early anesthetic

treatment also reduced the subsequent escape and survival
of injured, but not uninjured, squid. Thus, while minor injury

increases the risk of predatory attack, it also triggers a sensi-
tized state that promotes enhanced responsiveness to

threats, increasing the survival (Darwinian fitness) of injured
animals during subsequent predatory encounters.
Results

Because minor injury in the squid, Doryteuthis (Loligo) pealeii,
induces hypersensitivity to visual and cutaneous stimuli
without affecting general activity levels or foraging behavior
[5], we hypothesized that nociceptive sensitization in these an-
imals functions primarily to offset increased risks of predation.
To test this hypothesis, we staged a series of controlled
interactions with a fish predator, black sea bass (Centropristis
striata), askingwhether prevention of nociceptive sensitization
by transient anesthetization during surgery influenced the
*Correspondence: robyn.crook@uth.tmc.edu (R.J.C.), edgar.t.walters@uth.
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course and outcome of the predatory interaction. Black sea
bass are benthic, visual hunters [10] that prey on D. pealei as
theymigrate into shallow, inshore areas [11]. Our observations
confirmed that these predatory interactions follow a distinct
series of stages that are diagrammed in Figure 1 [5, 7, 8, 12],
beginning with a primary defense of crypsis (avoiding detec-
tion) and progressing swiftly to secondary defenses against
pursuit by the predator that begin with deimatic behavior of
rapid body patterning appearance and/or avoidance swim-
ming, followed by escape jetting and protean defense (ink
release and erratic, unpredictable jetting directions). When a
fish targets a squid, its chase sequence progresses in stages
from orientation to pursuit, attack, and capture [8, 13, 14],
with many encounters abandoned prior to completion.

Fish Predators Target Squid with Injuries
Minor injury to a single arm 6 hr earlier produced no effects
on spontaneous swimming or other behaviors detectable by
human observers during video analysis, regardless of whether
the animal had been anesthetized during the injury (see also
[5]). Nevertheless, black sea bass selectively targeted squid
in both injured groups (injured [I] and injured treatedwith anes-
thetic [IA]) compared to the uninjured groups (uninjured [U]
and uninjured treated with anesthetic [UA]) (for anesthetic
details see legend of Figure 2 and Supplemental Experimental
Procedures available online). In mixed-treatment trials (n = 4
trials, containing 2 each injured and uninjured squid), squid
in the I group were more likely to be captured than squid in
the U group present at the same time (five of eight I versus
one of eight U squid, odds ratio = 11.7, z = 1.89, p = 0.05). In
trials involving single-treatment groups of squid (e.g., all four
were uninjured or all four were injured), fish both oriented to
and pursued squid in the I and IA groups from longer distances
compared to squid in the U and UA groups (post hoc t tests,
p = 0.02 and 0.001, respectively; Figures 2A and 2B), indicating
that even minor injuries make squid either more conspicuous
or more attractive targets to a natural predator [15].

Sensitized Squid Are More Responsive to Predation
Threats

Squid in the I group (n = 20) had longer alert distances [16, 17]
than squid in the IA, U, or UA groups (n = 16, 20, and 16,
respectively), indicating earlier initiation of secondary de-
fense (I versus U, p = 0.03; Figure 2C). Similarly, I group squid
showed alert behaviors at earlier stages of encounters than IA,
U, or UA squid (p = 0.004; Figure 2D), despite fish orientation
and pursuit usually occurring at greater distances from injured
than uninjured squid (Figures 2A and 2B). I group squid also
had longer flight initiation distances (versus U, p = 0.008; Fig-
ure 2E) compared with squid in the other three groups.

Nociceptive Sensitization in Prey Affects the Likelihood
that a Predatory Encounter Will Escalate

Squid in the I group were less likely to be pursued after orien-
tation by fish than U group squid (p = 0.046; Figure 2F),
compared with squid in the IA group (p = 0.017). In encounters
that escalated to pursuit, squid in both the I and IA groups had
higher probabilities of being attacked (I versus U, p = 0.042;
IA versus U, p = 0.023; Figure 2G). However, only attacks
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Figure 1. Escalation Pattern in Predator-Prey Interactions between Black Sea Bass and Squid

Top: four stages of predator behavior. Orientation is the first change in direction toward a squid from an ongoing swimming trajectory, and the distance from

fish to squid is the ‘‘start distance’’ of the predation attempt. Pursuit is an accelerated, direct approach toward a squid, with the fish’s dorsal, pectoral, and

caudal fins folded. Attack is close-proximity ‘‘grappling,’’ with the fish’s mouth open and fins extended to facilitate rapid directional changes. Capture is

defined as any part of the squid’s body caught in themouth of the fish. Bottom: defensive responses of squid to the fish. Primary defense (avoiding detection

via crypsis) escalates to secondary defenses once the squid is alerted. Crypsis, via chromatophore patterns of disruptive banding while sitting on the sub-

strate or all-over beige when swimming, occurs in the absence of encounters and often during early encounter stages; it received an escalation score of 0.

Distance between squid and fish at the first secondary defensive behavior is the ‘‘alert distance.’’ Secondary defenses were scored based on their typical

progression. Deimatic chromatophore displays that distract or startle a predatorwere scored 1, aswere slow avoidance swimming evoked by distant threat.

Escape jetting without inking was scored 2. This typically (but not always) followed expression of behaviors scored 1. Ink release, which was almost always

combined with erratic escape jetting, was scored 3. The highest escalation score was recorded for each predatory encounter.
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involving IA squid had a significantly greater probability of
capture (p = 0.048; Figure 2H). Similarly, IA squid made fewer
successful escapes (indicated by the total number of encoun-
ters that fish aborted prior to capture) than U squid (data not
shown, p = 0.028).

Predation Risk Is Highest among Squid that Are Injured but

Not Sensitized
Prior injury reduced survival of attacked squid, with both the
I and IA groups having lower odds of surviving the 30 min
encounter compared with squid in the U group (I versus U;
odds ratio = 4.89 (large effect), z = 2.212, p = 0.026, IA; odds
ratio = 17.33 (large effect), z = 3.35, p = 0.008; Figure 3). Based
on our earlier findings that injury induces behavioral sensitiza-
tion [5] and that neuronal sensitization in squid is prevented
by injection of anesthetic at an injury site [6], we predicted
that survival in the IA group would be less than that in the I
group (i.e., that anesthetic treatment would prevent nocicep-
tive sensitization and its later survival benefit). This prediction
was supported by the higher survival rate of I group squid
compared to the nonsensitized IA group squid (odds ratio
3.54 [medium effect], z = 1.618, p = 0.05). This apparent benefit
of nociceptive sensitization (Figure 3) is not accounted for by
deficits caused by the anesthetic treatment, because there
was only a slight, statistically insignificant difference in survival
between the UA and U groups.

Discussion

This study provides the first experimental support for the
hypothesis that nociceptive sensitization is an adaptive
response to injury. Although neural mechanisms of nociceptive
sensitization have received extensive study in the contexts of
pain [18, 19] and aversive learning [20, 21], and its adaptive
value for recuperative behavior, contextual learning, and
defense against potential attackers has been conjectured [1,
22–24], until now there has been no direct evidence for a contri-
butionof nociceptive sensitization toDarwinian fitness. Indeed,
in clinical contexts long-lasting sensitization and pain are often
assumed to be maladaptive rather than adaptive [19, 25].
Injury and other types of noxious stimulation produce

several forms of long-lasting behavioral and neural sensitiza-
tion in many animals [5, 9, 26–29]. At the behavioral level,
this includes general sensitization (hypervigilance, anxiety-
like states) and site-specific sensitization near sites of injury
(expressed in mammals as primary hyperalgesia) [1]. Behav-
ioral sensitization is known to occur after predatory attacks
(including conspecific and parasitoid assaults) [3, 6, 30–32].
Even in some invertebrate animals, noxious stimulation can
produce long-lasting motivational effects with possible func-
tional similarities to mammalian pain and fear states [33–35].
The existence of nociceptive sensitization and related motiva-
tional states in diverse species suggests that long-lasting,
injury-related defensive states—which in humans are associ-
ated with pain and anxiety—are the product of strong and
widespread evolutionary selection pressures [1].
Sublethal injury in animals is ubiquitous and costly [13, 36,

37], arising from failed predatory attacks [38], intraspecific
conflicts [39], and injury unrelated to predatory attempts
[40]. A significant fitness cost of injury is increased risk of
subsequent attacks by predators [41, 42], which often target
compromised prey [15, 43, 44]. Injury may also lead to less
successful avoidance of predation because of biomechanical
[45] or energetic sequelae of injury [39, 46].
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Figure 2. Encounters Are Affected by Previous

Injury to Prey and by Nociceptive Sensitization

Squid received one of four treatments 6 hr prior to

exposure to fish. Uninjured (U, n = 20) squid were

handled but not injured. Uninjured under anes-

thetic (UA, n = 16) squid received general and local

anesthesia (immersion in 1% ethanol and local in-

jection of isotonic MgCl2 into an arm) but no arm

injury. Injured (I, n = 20) squid were handled and

the tip of one arm was removed with a surgical

scalpel. Squid injured under anesthetic (IA, n =

16) received general and local anesthesia before

arm injury.

(A and B) Fish targeted injured prey. Orientation to

squid (start distance; A) and initiation of pursuit (B)

occurred at greater distances in both the I and IA

groups compared with U group. The UA group

was not different from the U group. Bars show

mean + SEM. Two-way ANOVA with post hoc,

two-tailed t tests. *, comparisons to U group; +,

comparisons between the I and IA group. *p <

0.05, **p < 0.01, ***p < 0.001.

(C, D, and E) Squid in the I group had longer

alert distances (earlier initiation of secondary de-

fenses; C), were alerted at earlier encounter stages

(D), and initiated flight (escape jetting with or

without ink) at greater distances compared to the

other groups (E) (Kruskall-Wallis test with post

hoc, Bonferroni-corrected Mann-Whitney U tests,

significance indicators as for B).

(F, G, and H) The probability of encounter escala-

tion was increased by prior injury and by prior

anesthetic treatment. Encounters were less likely

to escalate from orientation to pursuit for the I

group than for the other groups (F), were more

likely to escalate to attack for the I and IA groups

(G), and were more likely to escalate to capture

for the IA group (H). Fisher’s exact tests, signifi-

cance markers as for (D). Ratios indicate number

of escalations/number of encounters.
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The adaptive value of nociceptive sensitizationwas revealed
in our study by using brief anesthetic treatment at the time of
injury—which prevents the development of nociceptor sensi-
tization in D. pealeii ([6] see also [9])—to prevent ensuing
hypervigilance. Adaptive value was indicated by reduced
responsiveness of these squid to the predator compared
with squid injured without anesthetic (Figures 2C–2E). Most
importantly, the previously anesthetized, injured squid had
the highest likelihood of capture (Figure 2H) and mortality dur-
ing the predatory interaction (Figure 3), revealing that the full
cost of injury is partially compensated by sensitized behavior.
Several considerations indicate that these effects result from
anesthesia preventing the development of generalized noci-
ceptive sensitization [5, 6], rather than nonspecific, lingering
effects on the condition of the animal. Anesthetic treatment
by itself did not compromise behavioral function because the
UA group showed no significant differences from the U group
in any of the behavioral measures (Figures 2C–2E) or survival
(Figure 3), nor did previously anesthetized animals show other
signs of motor or sensory impairment during the predatory
encounter. In addition, very brief, light general anesthesia by
immersion in 1% ethanol [47] was combined with injection of
isotonic MgCl2 locally at the site to be transected, where the
restriction of relaxed chromatophores to skin near the injection
site showed that the MgCl2 did not travel to the base of the
treated arm. Moreover, we have shown previously that MgCl2
injected near a wound on a fin remains localized to the injury
site while completely blocking the development of generalized
sensitization of primary nociceptors [6]. Therefore, the preven-
tion of hypervigilance and the increase in mortality can be
attributed to our anesthetic procedures selectively blocking
the induction of long-lasting nociceptive sensitization during
arm injury. An interesting possibility is that the adaptive,
injury-induced hypervigilance may be promoted by persistent
spontaneous activity generated in peripheral terminals of pri-
mary nociceptors of the squid [6].
Higher mortality rates among injured animals might also be

explained by debilitating physiological consequences of injury
([46, 48] but see [49]). However, consistent with our earlier re-
sults [5], we found no evidence that injured squid had shorter
flight distances or flight durations after encounters were
aborted by fish, which would be expected if the experimental
injury were debilitating. Loss of maneuverability due to arm
injury is also unlikely, as only the injured squid lacking sensiti-
zationwere less effective at averting predatory escalation from
attack to capture, the stage when rapid changes in direction
would be most critical.
Although we observed no deficits in swimming ability, squid

with injuries, whether or not they were sensitized, had lower
survival rates compared with uninjured squid. This confirms
that even minor injuries carry significant costs [50], but it
is not yet clear which consequences of the arm injury were
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At the conclusion of a 30 min trial with free interaction of squid and fish,

squid in the I and IA groups had lower overall survival than in the U group,

and IA group squid were most likely to be killed. The difference in survival

between the U and the IA group can be considered the cost of being injured,
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0.05) reveals the benefit that nociceptive sensitization provides to injured

animals. Odds ratios, *p % 0.05, **p < 0.01. U, uninjured; UA, uninjured

with anesthetic treatment; I, injured; IA, injured with anesthetic treatment.
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responsible for this increased risk. The differing survival odds
among squid with and without injuries or sensitization re-
sulted from changes in behavior of both the predator and
prey. In squid, sensitization produced changes in antipredator
responses that resulted in increased alert distances and
flight initiation distances and increased reliance on escalated
defensive behaviors such as inking and jetting at earlier
stages of encounters (Figure 1) [8]. Theoretical and empirical
studies have shown that flight initiation distance should
be longer when prey perceive risks to be greater [16], which
is consistent with our observations. However, these same
studies also predict that flight initiation distance should be
longer when initial fitness (survival probability at the start
of an encounter) is higher. This prediction differs from our
finding that injured squid had longer flight initiation distances
despite the demonstrated fitness cost of injury. Therefore, in
some species, early flight and related effects of nociceptive
sensitization may occur instead of or in opposition to other
responses of prey animals to substandard conditions such
as previous injury.

Fish predators also behaved differently in encounters with
injured squid, regardless of prey sensitization. Fish targeting
injured prey had longer start distances and initiated pursuits
from greater distances compared with controls, suggesting
that they may invest more effort in encounters with prey
perceived to be more vulnerable. Encounters with injured
squid were also more likely to escalate to attack compared
with encounters with control squid. Previous studies have
shown that predators are adept at detecting and targeting
prey animals in substandard condition [15, 44, 51]; an inter-
esting question is whether fish targeted injured squid because
they detected signs of injury directly via visual or olfactory
cues, or whether injured squid made themselves more con-
spicuous at early encounter stages by abandoning crypsis
sooner [48]. Although video analysis of the injured squid did
not reveal deficits in swimming speed or maneuverability, it
is likely that predators that have evolved to select the most
vulnerable prey are capable of identifying weaknesses that
are not apparent to human observers.
The necessarily artificial conditions of our experimental

encounters, particularly the relatively small size of our experi-
mental arena, may have produced dynamics that are uncom-
mon in the wild. Nonetheless, these experimental conditions
of high, unremitting predation risk, combined with an interven-
tion that prevented the development of injury-induced hyper-
vigilance, were sufficient to demonstrate opposing effects of
injury and nociceptive sensitization and thereby to reveal an
adaptive function for the sensitization. Moreover, our findings
strongly support the possibility that mitigation of heightened
predation risk after sublethal injury has been an important
selection pressure shaping the evolution of persistent neural
hyperexcitability mechanisms underlying injury-related states
of behavioral hypersensitivity.
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Supplemental Experimental Procedures 

 

Animals 

Male and female adult squid (Doryteuthis [Loligo] pealei), mantle length 14-22 

cm), were collected from local waters around Woods Hole, MA and maintained in 

groups of 5-10 in holding tanks containing ambient-temperature (19-21oC), flow-

through seawater. Squid were fed once daily on small fish, Fundulus spp. Only 

animals with no evidence of previous injury were used.  

Four black sea bass (Centropristis striata, total length 36 - 48cm) were used as 

squid predators. Fish were caught by trawl net and acclimated to captivity for at 

least 1 month prior to being used in experiments. Fish were rotated out of the 

experimental tank and replaced with naïve fish as their experience with the trial 

procedure increased. Fish were fed on alternate days on chopped squid, 

supplemented with live squid captured during predation trials. 

 

Ethical Note 

In the US invertebrate animals are not covered under IACUC regulations, thus no

approval for procedures on squid was required for this study. Manipulations of 

live squid followed the guidelines of the Animal Behaviour Society for 

predator/prey studies and the International Association for the Study of Pain for 

vertebrates undergoing potentially stressful and painful procedures. We chose to 

stage interactions and use a controlled injury procedure on selected captive 

squid because wild adult squid often have pre-existing injuries of unknown age 



and varying severity, and observation of predatory interactions in wild marine 

animals is extremely difficult. Squid were anesthetized whenever possible during 

surgical manipulations, except when anesthesia conflicted with the aims of the 

experiment. Animals were monitored daily and squid with any evidence of 

compromised health were euthanized. All squid that were not consumed at the 

conclusion of the 30-minute trial were euthanized immediately by immersion in 

isotonic MgCl2 followed by decapitation and decerebration. To minimize animal 

numbers the study was designed only to detect large effects. Experimental 

injuries were minor compared to observed survivable injuries in the wild, the trial 

tank enabled effective squid camouflage (reducing escape swimming), and trials 

were kept short to reduce overall stress. All procedures on vertebrates (capture 

and housing of black seabass) were approved by the MBL IACUC committee, 

and fish were released into local waters at the study’s conclusion. 

 

Procedure  

Treatment groups: Squid received one of four treatments 6 hours prior to 

interaction with fish. 

1. Uninjured (U): Squid were restrained briefly in a net. 

2. Injured (I): Squid were restrained as above, and the tip (5-10mm) of one of 

the third arms (see Fig 1) was removed using a sterile scalpel, 

approximating common natural injuries to the arm tips that occur during 

intraspecific aggression and hunting. This injury model produces robust, 

long-lasting behavioral sensitization [S1]. 



3. Injured while treated with anesthetic (IA): Squid were immersed in 1% 

ethanol in seawater, which produces light general anesthesia for a few 

minutes, [S2], 2 minutes before injury. Approximately 1 minute before 

injury, local anesthesia was produced by injection of 0.5-1 ml isotonic 

MgCl2 into muscle and skin in the middle of the treated arm. Arms were 

ligated prior to cut to prevent excessive bleeding. Focal injection of 

isotonic MgCl2 blocks the development of local and remote nociceptor 

sensitization in squid [S3, see also S4]. In contrast to the effect on 

chromatophores at the arm injection site, the lack of relaxed 

chromatophores at the base of the injected arm and head demonstrated 

that the injected solution remained at the injected site, as previously 

observed with injections into the fin [S3]  

4. Uninjured and treated with anesthetic (UA): Squid received the same 

anesthetic combination but no arm injury. 

 

Predator/Prey interactions: Interactions were staged in a 360 cm diameter tank 

filled to 90 cm deep with ambient (~21 degrees C), filtered SW. The bottom of the 

tank was covered in a 5 cm layer of sand and small pebbles to facilitate effective 

squid camouflage. In the center of the tank an opaque, 90 cm diameter divider 

ring provided a temporary holding area for squid, while four predatory fish were 

free to swim around the outside of the divider. One hour prior to the interaction, 

four squid were placed in the central ring. Beginning 10 minutes before starting 

the trial, the tank was lit from above with three halogen lamps, and video 



cameras were positioned at two windows in the tank walls, providing triangulated 

underwater recordings of all interactions. To start the trial, the divider was lifted 

by a pulley system operated by an experimenter out of view of the animals, and 

squid and fish were allowed to interact. After 30 minutes any remaining squid 

were netted from the tank and euthanized by immediate immersion in isotonic 

MgCl2.  

Trials were run on alternate days. Fish behavior changed over the course 

of multiple trials as they learned to anticipate the release of squid. Trials of squid 

with different experimental treatments were counterbalanced each week, and fish 

were changed three times over the 3-month experiment run to reduce the effect 

of predator experience. 

 

Data analysis 

 We synchronized recordings from each camera using Final Cut Pro (Apple 

Computer). Behaviors of fish and squid were analyzed from both angles 

simultaneously. Measurements of distances between predator and prey at 

various encounter stages were estimated based on measured distances of 

landmarks placed on the tank walls and base, and expressed as squid body 

lengths. Encounters were divided into five stages as shown in Figure 1. Most 

trials contained multiple encounters that were aborted prior to the attack or 

capture stages. We tracked individual squid across time whenever possible, but 

in some cases it was not clear which squid were the focus of the fish. Previous 

studies using a similar experimental set-up have shown that repeated encounters 



within minutes do not have an appreciable effect on either predator or prey 

behavior [8], thus we did not compute within-animal measures and considered 

encounters independent for analysis purposes.  

We recorded behaviors of squid at each of the predation stages and 

measured the distance between squid and fish for the first response made by 

squid (the measure of alert distance, [S5, S6]) and for each new behavior 

observed. Squid defensive behaviors were ranked based on escalation following 

previous studies [S1, S7–9], and scored as described in Figure 1.  

Kruskall Wallis tests were applied to ranked variables, and factorial 

ANOVA was followed by single factor ANOVA for measurement variables 

identified as significant in the factorial analysis. Categorical variables were 

compared with Fisher’s exact tests and risks of predation were calculated with 

odds ratios. Because sample sizes were intentionally small, we protected weak 

effects by minimizing the number of planned comparisons. Post-hoc tests were 

two-tailed and the critical alpha was set at 0.05, with one exception. On the basis 

of our previous demonstration of injury-induced behavioral sensitization [S1] 

combined with our finding that injection of isotonic MgCl2 blocks the development 

of neural sensitization [S3] we made the a priori hypothesis that survival in the IA 

group would be lower than survival in the I group, and this hypothesis was tested 

with one-tailed odds ratios. Statistical analyses were performed using Prism 6.0 

and SAS 9.1. 



Two observers (RC, KD) analysed video data, with ~40% overlap. Inter-

observer reliability was computed for measurement variables and was 

considered acceptable (76% agreement with 2 body lengths of tolerance).  

 

Definitions of squid behavior (Fig 1) and descriptions of measurements (Fig 2) 

Primary defense: Crypsis is a common form of visual camouflage that 

hinders detection or recognition of prey by predators, thus decreasing prey 

encounters with predators. General background resemblance (aka background 

matching) is often used by squids on dark uniform or mottled backgrounds, or in 

the water column. On some light benthic backgrounds and those with larger 

objects, squid produce dark transverse bands that are characteristic of disruptive 

coloration, which presumably retards recognition by breaking up the longitudinal 

shape of the squid.  

Secondary defense: When squid perceive that they have been detected 

by a predator, they rapidly transition to brief deimatic displays and then a series 

of protean behaviors. Collectively, these sequences of behavior confuse the 

predator, make it hesitate in its initial attack sequence, and confound 

predictability via erratic escape behaviors.  

Diematic behavior: These are defined as highly conspicuous visual 

displays and postures that intimidate or bluff the predator, causing the predator to 

hesitate or abandon its attack. In squid, this includes rapid darkening of the entire 

body followed often by equally rapid (i.e. <1 sec) blanching of the entire body.  



Protean behavior: These are sequences of behavior that are sufficiently 

unsystematic in appearance to prevent a predator from predicting in detail the 

position or actions of the prey. In squid, these entail erratic, unpredictable body 

pattern changes, inking and jetting. 

Start distance: The distance from the fish to the squid (expressed in squid 

body lengths) when the fish made its first orientating movement toward the squid. 

Alert distance: The distance between squid and fish when squid first 

switched from primary to secondary defense. 
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