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Microglia simultaneously regulate the
programmed cell death and survival
of developing neurons.

Microglia promote differentiation and
provide trophic support for developing
astrocytes, oligodendrocytes, and
vasculature.

Formation of neural circuits and activ-
ity-dependent remodeling and matura-
tion of synapses are regulated by
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Microglia are resident macrophages of the central nervous system (CNS),
representing 5–10% of total CNS cells. Recent findings reveal that microglia
enter the embryonic brain, take up residence before the differentiation of other
CNS cell types, and become critical regulators of CNS development. Here, we
discuss exciting new work implicating microglia in a range of developmental
processes, including regulation of cell number and spatial patterning of CNS
cells, myelination, and formation and refinement of neural circuits. Furthermore,
we review studies suggesting that these cellular functions result in the modula-
tion of behavior, which has important implications for a variety of neurological
disorders.
microglia in the embryonic and post-
natal brain.

Pharmacological and genetic disrup-
tion of microglia function results in
behavioral abnormalities in juvenile
and adult animals.

Mutations in microglial genes have
been identified in human neurological
disease, including hereditary diffuse
leukoencephalopathy with spheroids
(HDLS) and Nasu-Hakola disease. In
addition, allelic variations in microglia-
related genes are associated with
increased susceptibility to several neu-
rological diseases, from Alzheimer's
disease to schizophrenia.
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Microglia in the Developing Central Nervous System
Development represents a remarkably dynamic window in the course of an organism's life,
requiring coordination and communication among vastly different organ systems and cell types.
In the CNS, a variety of neurons and glial cells must communicate with one another to achieve
the exquisite structure and function that are characteristic of the mature system. Included among
these cell types are microglia, the resident brain macrophage, which comprise approximately
5–10% of total CNS cells. Microglia are one of the first tissue macrophages to be born in the yolk
sac at approximately embryonic day 7.5 (E7.5) and migrate into the brain rudiment at approxi-
mately E9.5, where they take up residence and self-renew throughout life [1–5]. The timing of this
colonization occurs before the differentiation of other resident nervous system cells [6]. As a
result, microglia are present at the right time and place to have critical roles in CNS development.
Here, we review recent work demonstrating that microglia regulate an array of developmental
processes that are necessary for achieving appropriate cellular architecture and function in the
mature CNS. We also discuss the emerging idea that these cellular functions may be novel
mechanisms by which devastating neurological disorders manifest (Table 1).

Control of Neuron Cell Fate and Number
In the developing CNS, resident cells are born and migrate to their appropriate location. During
this process, a subset of newly born cells must be lost during normal programmed cell death
(NPCD) while the remaining cells mature [7,8]. Early imaging studies demonstrated that microglia
engulf dead or dying cells throughout the developing brain [9,10] (Figure 1A). However, it
remained unclear whether microglia had a more active role by initiating the cell death program
before engulfment. Some of the most direct evidence for a more active role came from in vitro
studies in chick retina where NPCD was reduced when retinas were cultured in the absence of
microglia [11]. When microglia were added back to the cultures, retinal cell death increased; an
effect attributed to microglia-derived nerve growth factor (NGF). Similarly, in cultured mouse
cerebellar slices or rat spinal cord explants, microglia engulfed dead or dying cells, and
pharmacological depletion of microglia resulted in reduced Purkinje neuron and motoneuron
NPCD [12,13]. Superoxide ions released from microglia mediated Purkinje neuron cell death in
the cerebellum, while microglial-derived TNF-/ initiated NPCD of motoneurons in the spinal
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Table 1. Animal Models or Human Diseases Associated with Microglia Dysfunction during Development

Model or Disease Species Manipulation Behavior Affected Refs

Animal Studies

Early life infection followed
by later life immune challenge

Rat Prenatal Escherichia coli
and later life LPS challenge
+/– handling

Memory [72–74]

Maternal immune activation Mouse or
nonhuman
primate

Poly(I:C) in utero +/–
postnatal stress

Anxiety, sensorimotor
gating, learning,
psychotomimetic drug
sensitivity, social
interactions, ultrasonic
vocalizations, repetitive
behavior

[75–78]

Estradiol-treated females Rat Minocycline Copulatory behavior [79]

CX3CR1 KO Mouse Gene ablation Social interactions [80]

Microglia depletion in juvenile Mouse Diphtheria toxin receptor
expression using
CX3CR1cre-ERT2

Motor learning [85]

Microglia-specific BDNF null Mouse Gene ablation using
CX3CR1cre-ERT2

Motor learning [85]

Hoxb8 mutant Mouse Gene mutation
+/– wild-type myeloid
cells

Grooming [81]

Mecp2 null Mouse Gene mutation
+/– wild-type myeloid
cells

Locomotion, weight,
breathing, and lifespan

[82,83]

Mecp2 null Mouse Gene mutation
+/– wild-type myeloid
cells

None [84]

Human Studies

HDLS Human CSF1R mutations Impairments in mood,
social interactions,
cognition, and motor
control

[95]

Nasu-Hakola disease Human DAP12 or TREM2
mutations

Psychosis and dementia [96]

Frontotemporal dementia Human TREM2 mutation Dementia [100]

Alzheimer's disease Human CD33 risk allele; TREM2
variant

Increased disease
susceptibility

[97–99]

Multiple sclerosis Human IRF8 and TNFRSF1A
variants

Increased disease
susceptibility

[101,102]

Bipolar and major
depression

Human P2RX7 risk allele Increased disease
susceptibility

[103,104]

Schizophrenia human C4 variant Increased disease
susceptibility

[105]
cord. These data suggest that microglia not only have a critical role in clearing the cellular debris
of dead or dying cells, but also actively initiate the cell death program.

Similar to in vitro studies, microglia have been suggested to regulate NPCD at sites of neuro-
genesis in vivo [108,109]. In developing zebrafish, phosphatidyl serine receptors (Bal1 and Tim-
4) were recently identified to regulate the phagocytic machinery necessary for microglia to clear
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Figure 1. Microglia Interact with Developing Cells in the Postnatal Brain. (A) Microglia (green) in the juvenile (P30)
mouse hippocampus represent 5–10% of total central nervous system (CNS) cells. Microglia are labeled using a transgenic
reporter (CX3CR1egfp/WT) and neurons are labeled with an antibody directed against NeuN (purple). Scale bar = 100 mm. (B)
Microglia (Cx3CR1egfp/WT, green) in the subventricular zone (SVZ) of a P13 mouse engulfing actively dividing cells labeled
with 5-ethynyl-20-deoxyuridine (EDU; purple). Often, these apoptotic dividing cells are found enveloped within microglial
processes that form phagocytic cups (arrow and enlarged in inset). (C) Microglia (CX3CR1egfp/WT, green) closely associate
and often contact (arrow and inset) retinal ganglion cell (RGC) presynaptic inputs, labeled by anterograde tracing with
cholera toxin b subunit conjugated to Alexa 594 (CTB-594, purple) in the juvenile mouse lateral geniculate nucleus (LGN,
P29). (D) (i) Microglia (CX3CR1egfp/WT, green) in the early postnatal LGN (P5) closely associate with RGC presynaptic inputs
(CTB-594, purple). (ii) Engulfment of presynaptic inputs can be visualized within the microglia soma and processes (arrow,
inset) once all RGC input fluorescence outside the microglia volume is subtracted. Scale bar = 10 mm (B–D).
dying neurons in the developing brain [14]. However, apoptosis still progressed in the absence of
microglia. In macaques and rats, microglia engulfed excess neural progenitor cells (NPCs) as
neurogenesis neared completion in the cerebral cortex [15]. Furthermore, the number of cortical
NPCs increased when microglia were pharmacologically inactivated with broad-spectrum
antibiotics (minocycline or doxycycline) or depleted with liposomal clodronate [15]. Conversely,
treating mice in utero with lipopolysaccharide (LPS) to increase the inflammatory state of
microglia resulted in a decrease in NPCs in the cortex. These data suggest that microglia
regulate NPC number by initiating cell death in the mammalian brain and engulfing dead or dying
cells. Given that the pharmacological approaches in the mammal are relatively nonspecific,
future work is necessary to determine whether these effects are microglia specific. In addition, it
is unknown whether the Bal1- and Tim-4-dependent phagocytosis of dying neurons in the
developing zebrafish is a conserved mechanism across species.
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Microglial-derived factors are also critical to the survival, proliferation, and maturation of NPCs in
the developing brain. For example, the addition of microglia-conditioned media to cultured
neurons resulted in an increase in NPC proliferation coupled with enhanced neuron survival and
maturation [16–18]. Similarly, NPCs isolated from E12 mice that lacked microglia (PU.1-deficient
mice) exhibited decreases in both proliferation and astrogenesis, effects that were attenuated by
the addition of wild-type microglia [19]. By contrast, NPCs isolated from 3-month-old rats and
co-cultured with increasing concentrations of microglia, revealed an inverse correlation between
progenitor cell survival and microglia concentration [20]. These different conclusions may be a
result of regional differences in microglia function (cortex versus hippocampus) or differences in
culture preparation. To assess whether microglia provide trophic support to neurons in vivo,
genetic mouse models have been utilized. Mice deficient in the fractalkine receptor (CX3CR1), a
chemokine receptor highly enriched in microglia in healthy CNS, had significant increases in
numbers of apoptotic neurons in layer V of the postnatal cerebral cortex [21]. This effect was
replicated by pharmacologically inactivating or genetically depleting microglia. Furthermore,
because similar rates of apoptotic cell engulfment were observed in CX3CR1-deficient and wild-
type microglia, it is unlikely that increased apoptotic neurons resulted from inefficient clearance of
dead cells by CX3CR1-deficient microglia. Instead, this effect was attributed to reductions in
insulin-like growth factor 1 (IGF-1) signaling, a potent trophic factor for NPC survival [22–24], in
CX3CR1-deficient mice. In another study, pharmacological inactivation of microglia with min-
ocycline in postnatal rats caused a reduction in the numbers of proliferating progenitor cells and
mature oligodendrocytes in the subventricular zone (SVZ) [25]. In vitro experiments on cultured
neurospheres suggested that this effect is regulated by microglia-derived cytokines, including
interleukin (IL)-1b, interferon-g, and IL-6.

While microglia regulate neuronal cell number throughout the brain by initiating NPCD and
engulfing dead or dying cells, other work has demonstrated a concomitant function to provide
trophic support to progenitor cells (Figure 2, Key Figure). How does a cell simultaneously
promote cell death, proliferation, survival, and maturation? Do these functions represent regional
differences in neuronal receptivity or heterogeneity of microglia in the brain? Answers to these
questions will be important to identify the function of microglia in the developing brain in health
and disease.

Regulation of Non-Neuronal Cell Development
In addition to neurons, microglia have been implicated in the development of other resident CNS
cell types ranging from other glial cells to vasculature. In the context of glial cells, in vitro evidence
suggests that microglia-conditioned media increases the differentiation of neural stem/precursor
cells (NSPCs) into astrocytes through IL-6 and leukaemia inhibitory factor (LIF) [26]. Similarly,
microglia-conditioned media promotes the survival and differentiation of cultured oligodendro-
cyte precursor cells (OPCs) into mature oligodendrocytes through several secreted factors,
including IGF-1, nuclear factor-kappaB (NF-kB), IL-1b, and IL-6 [25,27–29]. Microglia have also
been suggested to promote myelination by providing iron, a necessary co-factor for myelination,
to oligodendrocytes [30–32]. These results suggest that microglia have the potential to regulate
survival, proliferation, and maturation of most developing CNS cell types. However, most work
assessing the role of microglia in non-neuronal cell development is in vitro. It is unknown whether
these mechanisms apply in vivo.

There is also mounting evidence that microglia regulate the vascularization of the nervous
system. Initial observations showed that microglia arrive in the CNS before blood vessels
develop and closely associate with invading vessels, particularly in the developing retina
[33,34]. In vitro and in vivo depletion of microglia in rodents has further suggested that microglia
are necessary for vascular branching in the retina and hindbrain [35–38]. However, other studies
have reported the opposite effect: depletion of microglia in an ex vivo retinal preparation or in vivo
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Key Figure

A Summary of Microglia Functions in the Developing Brain
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Figure 2. New data demonstrate that microglia can affect the development of other resident cell types throughout the
central nervous system (CNS). Abbreviations: CR3, complement receptor 3; DAP12, DNAX-activation protein 12; IGF,
insulin-like growth factor 1; IL, interleukin; LIF, leukaemia inhibitory factor; NF-kB, nuclear factor-kappaB; NGF, nerve
growth factor; NPC, neural precursor cell; OPC, oligodendrocyte precursor cell.
loss of microglial Wnt-ligand transporter (Wntless) expression resulted in increased vascular
branching [39,40]. Thus, future work is necessary to determine precisely how microglia regulate
vasculogenesis. In addition, it remains unknown whether microglia-dependent regulation of
vascular branching is restricted to the developing retina or whether this is a broader effect
occurring throughout the CNS.

Activity-Dependent Patterning and Maturation of Neural Circuits
Neurons initially connect with each other at synapses to form a crude wiring diagram. Neural
activity then regulates the remodeling and maturation of this immature synaptic connectivity,
whereby synaptic connections that are less active are eliminated and those that are more active
are maintained and strengthened [41,42]. Microglia express neurotransmitter receptors and live
imaging studies have revealed that these cells are dynamic sensors of neural activity [43–46]. For
Trends in Cell Biology, August 2016, Vol. 26, No. 8 591



example, activity-dependent release of ATP from neurons regulates microglial process motility
and outgrowth [47–50] and dampening neural activity in the visual cortex by rearing mice in the
dark results in decreased microglial process motility [51]. Furthermore, increasing or decreasing
activity in the visual cortex changes the frequency and duration of microglial contact with
synapses and induces engulfment of elements that resemble synapses by ultrastructure
[51,52]. These data suggest that microglia regulate synapse development through activity-
dependent mechanisms.

To understand the functional consequences of activity-dependent microglial responses and
physical interactions with synapses (Figure 1B,C), recent data suggested key roles for microglia
in regulating the maturation and remodeling of synaptic connectivity. Earlier work in acute
hippocampal slices prepared from mice with a mutated microglial transmembrane receptor,
DNAX-activation protein 12 (DAP12), demonstrated an increase in electrophysiological features
characteristic of less-mature synapses [53]. In a follow-up study, these DAP12-mutant mice also
displayed abnormalities in the development of structural synapses in the hippocampus [54]. In
more recent studies, transient reductions in microglia numbers in the hippocampus or barrel
cortex due to a genetic deletion of CX3CR1 (CX3CR1 KO) resulted in delayed maturation of
structural and functional synapses [55,56]. These effects were later attenuated in juvenile
CX3CR1 KO mice after microglia density reached wild-type levels. Together, these data suggest
that microglia regulate the maturation of synapses in the postnatal brain.

Microglia have also been implicated in the remodeling of developing synapses in response to
changes in neural activity. Using the developing mouse retinogeniculate system, a classic model
system for studying activity-dependent synaptic remodeling [57–59], microglia were shown to
eliminate synaptic connections by engulfing a subset of immature, less-active presynaptic inputs
[57]. Furthermore, blocking engulfment either pharmacologically or genetically through disruption
of complement-mediated phagocytosis resulted in a sustained increase in synapse density and
inappropriate connectivity [57,60,61]. These data suggest a model by which complement proteins,
such as C1q and C3, bind or ‘tag’ less-active synapses for removal by microglia via the phagocytic
receptor, complement receptor 3 (CR3). This model is supported by in vivo data showing that C1q
and C3 localize to synaptic compartments, synaptic engulfment is reduced in C1q, C3, and
CR3-deficient mice, and in vitro data showing that microglia clear C1q-bound neurites by
CR3-dependent phagocytic signaling [60–62]. It remains unknown whether and how activity
regulates complement proteins. Interestingly, in the context of hypoxic injury and inflammation in
the hippocampus, CR3 was necessary to induce long-term synaptic depression (LTD), which
suggests that microglia modulate the plasticity of functional synapses via CR3 [63]. Together, these
studies demonstrate that microglia respond to changes in neural activity and suggest that they are
critical to the remodeling and maturation of synaptic connections in the developing brain.

In addition to modulating development of existing connectivity, microglia have also been
implicated in the initial wiring of the embryonic brain. Early work in the developing kitten corpus
callosum demonstrated engulfed axonal debris within microglia and astrocytes concomitant
with large-scale axonal remodeling [64]. Recent work in the embryonic mouse demonstrated a
similar phenomenon in which microglia appear to engulf a subset of developing tyrosine
hydroxylase (TH)-positive, dopaminergic axons [65]. Furthermore, dopaminergic axons were
increased at the entrance to the embryonic subpallium in CX3CR1-deficient mice or when mice
lacked microglia due to genetic deletion of PU.1 or treatment with an antibody against colony-
stimulating factor 1 receptor (CSF1R) [65]. Conversely, increasing microglia activation with LPS
resulted in a decrease in dopaminergic axons. Interestingly, in addition to dopaminergic axons,
interneurons were also affected. Depletion or activation of microglia, as well as genetic deletion of
CX3CR1 or DAP12, resulted in the premature entry and abnormal distribution of Lhx6-express-
ing interneurons in the embryonic cortical plate and a 10% decrease in a subset of interneurons
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in the postnatal cortex. In another study, outgrowth and fasciculation of axons within corpus
callosum were assessed in embryonic PU.1–/–, DAP12–/–, or LPS-treated mice [66]. Gene
expression profiles at E17.5 revealed a downregulation of genes related to neuritogenesis in
DAP12–/– and LPS-treated mice, which were accompanied by a significant increase in defas-
ciculated axon tracts in the corpus callosum of PU.1–/–, DAP12–/–, and LPS-treated mice. These
studies suggest that impairing microglia during embryogenesis affects axon outgrowth and
fasciculation.

In summary, these studies suggest key roles for microglia in the formation and remodeling of
neural circuits throughout several regions of the brain (Figure 2). Future work is necessary to
elucidate more mechanisms underlying these intercellular interactions and to identify functional
consequences. For example, while microglia engulf synapses through the classical complement
cascade in the developing visual system, this is likely not the only mechanism. In fact, mamma-
lian astrocytes and Drosophila glial cells perform similar functions through different phagocytic
receptors, including MEGF10 and MERTK in mammals and Draper (the MEGF10 homologue) in
Drosophila [67–70]. These data raise the question of whether microglia and astrocytes work
cooperatively. In addition, it is unknown how mechanisms that regulate microglial responses to
changes in neural activity, such as NMDAR-mediated ATP signaling, regulate the plasticity and
maturation of circuits [47]. It is also unknown whether microglia have a preference for affecting
outgrowth, synapse remodeling, and synapse maturation at specific circuits or whether this is a
more global process that occurs throughout the brain. Addressing these questions will be
important for understanding the basic biology underlying neural circuit development, with
tremendous promise for elucidating etiologies of devastating neuropsychiatric disorders with
known defects in microglia and brain wiring [2,71].

Microglia-Dependent Development of Functional Brain Circuits
Data reveal new roles for microglia in sculpting structural CNS circuitry during development by
regulating the numbers of cells and synaptic connections as well as the spatial patterning of
neurons and their projections. Do these functions ultimately translate to the development of
functional circuits and appropriate behaviors?

Some of the most compelling evidence that microglia regulate overall circuit function and
behavior comes from experiments in mice in which microglia were manipulated pharmacologi-
cally or genetically. For example, infecting postnatal rats with Escherichia coli followed by a later
life immune challenge with LPS resulted in increased hippocampal microglia reactivity and
impaired memory in adult mice [72]. Furthermore, 15 min daily handling of postnatal pups
(P4–P20) or pharmacological blockade of IL-1b, which is highly expressed by microglia in this
context, attenuated these effects [73,74]. Similarly, immune challenge in a pregnant mouse or
nonhuman primate resulted in offspring with behavioral deficits associated with autism, such as
changes in ultrasonic vocalizations, abnormal social interactions, and increased repetitive
behaviors [75–77]. A similar prenatal immune challenge followed by peripubertal stress in
the offspring also resulted in increased microglial reactivity in the pubescent hippocampus
and behavioral abnormalities in adult offspring, including sensorimotor gating deficits and
hypersensitivity to psychotomimetic drugs [78]. In addition, another study manipulated microglia
function with minocycline and observed changes in baseline, sex-specific behaviors, and
synapse architecture [79].

While these studies suggest that microglia regulate synaptic function, which can ultimately
translate to behavior, the pharmacological agents used in these studies are not specific and
affect other cells inside and outside the CNS. As a result, other work has taken advantage of
powerful molecular genetic approaches to assess the role of microglia in nervous system
function. For example, genetic deletion of CX3CR1, a receptor enriched in microglia, but also
Trends in Cell Biology, August 2016, Vol. 26, No. 8 593



expressed by other myeloid-derived cells [22–24], revealed abnormalities in structural connec-
tivity and social behaviors in adult mice [80]. In addition, re-expression of wild-type homeobox
B8 (Hoxb8) in myeloid-derived cells attenuated pathological grooming behavior in Hoxb8-
mutant mice [81]. Similarly, re-expression of methyl CpG binding protein 2 (Mecp2) in microglia
as well as other myeloid-derived cells attenuated phenotypes in a mouse model of Rett
Syndrome (Mecp2-null mice), an X-linked neurodevelopmental disorder [82,83] (Table 1). How-
ever, these data remain controversial [84]. To more specifically manipulate microglia function,
two groups recently created mice expressing Cre-ERT2 (Cre recombinase fused to the estrogen
receptor for temporal control) under the control of CX3CR1 [85,86]. This system takes advan-
tage of the relatively high and stable expression of CX3CR1 in microglia and low rate of microglia
turnover compared with other CX3CR1-positive peripheral immune cells [85,87]. Using this
technology, it was demonstrated that depleting microglia in the juvenile and early adult CNS
using a diphtheria toxin strategy or ablating microglia-derived BDNF resulted in abnormalities in
motor learning [85]. By contrast, depleting microglia using a newly developed pharmacological
strategy yielded conflicting results [4]. CSF1R is a cell surface receptor regulating survival,
proliferation, and differentiation of microglia and other mononuclear phagocytes [2,3]. Adminis-
tration of a drug that inhibits CSF1R (PLX3397) to adult mice resulted in depletion of primarily
microglia with little effect on behavioral measures of anxiety, motor function, learning, or memory
[4]. One intriguing notion exists that depletion strongly relies on context. It might be that microglia
are most critical for establishing brain connectivity and cytoarchitecture necessary for appropri-
ate behaviors in development, a function that is less critical in the adult. Future work is necessary
to identify the relative importance of these cells for overall nervous system function throughout
the lifespan of the animal.

While rodents are powerful experimental models that can be used to dissect cellular and
molecular mechanisms and assess intermediate phenotypes associated with human
neurological disease [88–90], there are limits to the system. We are lacking mouse models
that closely mimic neurological disease, particularly those that recapitulate the range of behav-
ioral abnormalities associated with psychiatric disorders. Thus, analysis of microglia function in
humans is a necessity. Indeed, some of the first evidence suggesting that microglia may have
fundamental roles in the functional development of circuits was observed in psychiatric dis-
orders, many of which are now thought to have developmental underpinnings [71,91,92]. Early
work in postmortem human tissue demonstrated abnormally reactive microglia in brain regions
relevant to behaviors associated with a range of psychiatric disorders, such as autism, schizo-
phrenia, and bipolar disorder. For example, a study in cerebral cortex demonstrated an increase
in MHC class II, human leukocyte antigen-DR (HLA-DR) immunoreactive microglia in autistic
versus age-matched control patients [93]. These data suggest that there is increased microglial
reactivity in the autistic brain. Since these early studies, we can now map genes to a particular
disease. This capability has provided new insight into roles of microglia in nervous system
function and has led to the identification of mutations in microglial genes underlying neurological
disease [94] (Table 1). Included in these diseases is hereditary diffuse leukoencephalopathy with
spheroids (HDLS), an autosomal dominant disease of the CNS white matter caused by
mutations in the microglial surface receptor CSF1R [95]. Patients with these mutations have
demyelination and axonal spheroids accompanied by mood, social, cognitive, and motor
impairments. In addition, loss-of-function mutations in the microglial surface receptors
DAP12 and TREM2 cause polycystic lipomembranous osteodysplasia with sclerosing leukoen-
cephalopathy (PLOSL; Nasu-Hakola disease) [96]. This disease is characterized by the devel-
opment of psychosis and early-onset progressive dementia as well as bone cysts, which are
likely due to loss of receptor function in other myeloid-derived cells. Interestingly, while symp-
toms typically manifest in adulthood in all these disorders, CSF1R, DAP12, and TREM2 are
expressed in microglia throughout development. Thus, it is possible that impairments have a
developmental underpinning, which become progressively worse and manifest in behavioral
594 Trends in Cell Biology, August 2016, Vol. 26, No. 8



Outstanding Questions
Are microglia heterogenous? Microglia
regulate an array of functions simulta-
neously with a high degree of regional
specificity. Determining whether micro-
glia are a heterogeneous cell population
and identifying how this heterogeneity
arises are critical future directions.

Do microglia regulate the development
and maturation of non-neuronal CNS
cell types in vivo? Most work identifying
roles for microglia in regulating the
development of non-neuronal cells is
in vitro. Thus, it is necessary to deter-
mine whether the same mechanisms
and functions occur in vivo and regu-
late development throughout multiple
regions of the CNS.

Do microglia work cooperatively with
neurons and/or astrocytes to actively
initiate synapse remodeling? All data
demonstrating that microglia engulf
synaptic elements in the developing
brain have been from fixed tissue.
Therefore, it is unknown whether
microglia actively initiate synaptic
remodeling and engulf intact synapses
or whether they are more passively
cleaning up synaptic remnants ren-
dered vulnerable by other neuron or
astrocyte-specific mechanisms.

Do mechanisms regulating neuronal
development act in the same pathway
or in parallel and are they activity
dependent? Several molecular mecha-
nisms have been identified to regulate
microglia-dependent development of
neurons and their synaptic connec-
tions. However, it is unknown whether
these molecular mechanisms work in
the same pathway or in parallel, or
whether these mechanisms are regu-
lated by neural activity.

Are microglia causative in neurological
disorders? Pharmacological and
genetic manipulation of microglia has
demonstrated changes in behavior in
mice and nonhuman primates. In addi-
tion, microglia-related genes have been
identified as risk factors for neurological
disorders ranging from Alzheimer's dis-
changes later in life. In addition to these ‘microgliopathies’, microglia-related genes have recently
been identified as risk factors for several other neurological diseases, including CD33 and
TREM2 in Alzheimer's disease, TREM2 in frontotemporal dementia, TNFRSF1A and IRF8 in
multiple sclerosis, and myeloid cell receptor P2RX7 in bipolar and major depressive disorders
[97–104]. In a very recent and exciting study, allelic variations in complement component 4 (C4)
in humans were identified as risk factors for developing schizophrenia [105]. Furthermore,
human C4 localized to synaptic compartments and mice deficient in C4 had sustained deficits
in synaptic remodeling. The authors proposed that, similar to C1q and C3, C4 may regulate
microglia-dependent synaptic remodeling. Future work is necessary to determine whether these
mutations or allelic variations are causative [106].

Concluding Remarks
It is an exciting time to study microglia (see Outstanding Questions). There are now interesting
data showing that microglia can perform a variety of functions in the context of the developing
brain, including regulating the number and maturation of other resident CNS cell types, vascular
branching, sculpting synaptic connectivity, regulating axon outgrowth, modulating synaptic
maturation, and affecting overall behavior (Figure 2). Despite the flurry of new data, many in vitro
experiments still require in vivo validation and many studies have used nonspecific pharmaco-
logical approaches to study microglia function. While recent work has made exciting progress in
identifying roles for microglia-specific molecules in brain wiring and function, molecular mecha-
nisms are still lacking. Furthermore, data suggest that microglia have separable functions in
different brain regions, but elucidating how these regional differences are specified on a cellular
and molecular level (i.e., microglial heterogeneity) will be important. Addressing these gaps in
knowledge will require new tool development. In particular, there is a need for the identification of
more microglia-specific genes that can be used to modulate function as well as the development
of strategies to more acutely modulate microglial gene expression in a region-specific manner
(e.g., viral-mediated gene delivery). These advancements will have tremendous impact on
understanding microglia function in the healthy CNS. Finally, there are many neurological
disorders in which microglia have now been implicated as central players in disease onset
and/or progression [2,107] (Table 1). However, it is impossible to model the full range of
behavioral abnormalities characteristic of human disease in rodents, particularly in the case
of psychiatric disorders. Thus, a more sophisticated assessment of microglia function in human
patients through functional imaging and gene profiling offers great promise. Identifying molecular
mechanisms in the context of animal models and developing technology to assess dysfunction
in humans will be critical next steps. These advancements will be necessary to elucidate the
basic biology underlying microglia function and for developing diagnostics and therapeutics for
devastating neurological disorders with underlying microglia dysfunction.
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